
1

On Scheduling Using Parallel Input-Output Queued
Crossbar Switches With No Speedup

Saadeddine S. Mneimneh1 , Vishal Sharma2, Kai-Yeung Siu1

Massachusetts Institute of Technology 1

77 Massachusetts Avenue, Cambrdige, MA 02139
and

Jasmine Networks, Inc.2

3061 B, Zanker Road, San Jose, CA 95134

Abstract— We propose an efficient parallel switching ar-
chitecture (PSA) that requires no speedup and guarantees
bounded delay. Our architecture consists of k crossbar
switches operating in parallel under the control of a sin-
gle scheduler, with k being independent of N the number
of inputs and outputs of the PSA. Arriving traffic is de-
multiplexed (spread) over the k identical crossbar switches,
switched to the correct output, and multiplexed (combined)
before departing from the parallel switch.

We show that by using an appropriate demultiplexing
strategy at the inputs and by applying the same matching
at each of the k parallel crossbar switches during each slot,
our scheme guarantees that the cells of a flow can be read in
FIFO order from the output queues of the crossbar switches,
thus eliminating the need for cell resequencing. Further, by
allowing the PSA scheduler to examine the state of only the
first of the k parallel switches, our scheme also reduces con-
siderably the amount of state information required at the
scheduler. The scheduling algorithms that we develop are
based on existing practical scheduling algorithms for cross-
bar switches, and have an additional communication com-
plexity that is optimal up to a constant factor.

Our approach also provides a way to build a high capacity
switch/router that can support line rates that are higher than
the speed at which the parallel switches themselves operate.

Keywords— Scheduling, parallel switches, speedup.

I. Introduction

TRADITIONAL output-queued or shared-memory ar-
chitectures are becoming increasingly inadequate to

meet the high bandwidth requirements of next generation
switches and routers, because having to account for multi-
ple arrivals to the same output requires their switch mem-
ories to operate at N times the line rate, where N is the
number of inputs.

Although input-queued switches provide an attractive al-
ternative since their memory and switch fabrics may op-
erate at only the line rate, they present a challenge for
providing quality-of-service (QoS) guarantees comparable
to those provided by output-queued switches, and require
a sophisticated scheduler or arbiter, making it a critical

This work was done as part of the first author’s summer intern-
ship at the Tellabs Research Center, June-August 2000. The work is
patented by Tellabs. Vishal Sharma was with Tellabs Research Cen-
ter in Cambridge, MA. He is now with Jasmine Networks, Inc. The
research was partially supported by the Networking Research Pro-
gram of the National Science Foundation, Award Number 9973015.

component of the switch.
For instance, traditional scheduling algorithms that

achieve 100% throughput in an input-queued switch do not
provide delay guarantees, and are based on computing a
maximum weighted matching [1], [2], [3] that requires a
running time of O(N2.5) or O(N3), making them imprac-
tical to implement on high-speed switches. Some recent
work [4] has, therefore, focused on asking whether an input-
queued switch can be made to emulate an output-queued
switch, and has demonstrated that this can be achieved by
a combination of a speedup in the fabric (of 2−1/N) and a
very clever scheduling algorithm. Such emulation involves
substantial book-keeping and communication overhead at
the scheduler, however, and, despite its theoretical signif-
icance, is not yet practical. Most practical scheduling al-
gorithms for input-queued switches (see, for instance, [7],
[8]), require a speedup of between 2 and 4 to achieve ade-
quate QoS guarantees. This means that the switch fabric
and the memory need to operate faster than the line rate
by the speedup factor. Also, an input-queued switch with
speedup requires buffers at the outputs, since more than
one cell can now be switched to an output in a given cell
slot. Fig. 1 depicts the architecture of a combined input-
output queued crossbar switch, where all queues are FIFO
queues.

Virtual Output
Queues

Switch
Fabric

Input
Links

Output
Queues

Output
Links
 1

N

1

N

Input
Queues

1

N

1

N
OQ

N

OQ
1

VOQ
1,
1

VOQ 1,N

VOQ
N,1

VOQ
N, N

Scheduler

Fig. 1. A combined input-output queued crossbar switch

We propose to use multiple crossbar switches in parallel,

2

allowing each switch to operate at the line rate, so that
no speedup is necessary. We show that such an architec-
ture, combined with efficient scheduling algorithms, is both
feasible and practical, and that operating the switches in
parallel incurs only a small additional computational and
communication cost. Furthermore, not only can such an
architecture provide bounded cell delay, it can also be used
to construct a switch whose aggregate line rate is some mul-
tiple of the rate at which any component crossbar switch
operates.

II. Motivation

As mentioned in the Introduction, most practical
scheduling algorithms in the literature today require a
speedup of at least 2. This poses two non-trivial difficulties
in moving towards higher speed switches:
• The first is that the memory within the switch must run
at a rate faster than that of the external lines. This reduces
memory access times, and makes it difficult to build prac-
tically useable memories, especially with the continuously
increasing line rates.
• The second is that, with speedup, the time available to
obtain a schedule by executing the scheduling algorithm is
also reduced. Specifically, with a speedup of S, a scheduling
algorithm has only 1/S units of time in which to compute
a schedule, since S scheduling computations must be made
per cell slot.

Our approach, therefore, is to eliminate the need for
speedup by using crossbar switches in parallel. Our goal is
not to emulate output queueing, as was done in some recent
works [5]. Rather, it is to obtain an efficient and practical
way of achieving basic guarantees, such as bounded cell de-
lay. We also show how our approach, combined with some
recently proposed scheduling algorithms, such as the rate
matrix based Birkhoff-von Neumann decomposition [6] can
be used to support a rate that is k times the line rate of a
single crossbar switch in the PSA.

III. Problem Statement

For the purpose of our exposition, we use the parallel
switching architecture (PSA) depicted in Fig. 2. The ar-
chitecture consists of N input ports, each having a demul-
tiplexer, and N output ports, each having a multiplexer.
Internally, the PSA consists of k crossbar switches in par-
allel, with each switch Si being a combined input-output
queued crossbar, like the one depicted in Fig. 1.

At each input port i of the PSA, a demultiplexer for-
wards cells arriving on that input to one of the k parallel
switches. Likewise, at every output port j of the PSA, a
multiplexer accesses output queue j for that port in each of
the k crossbar switches. During each cell slot, multiple cells
may arrive at an input i provided each was destined to a
different output j. Thus, the arrival of cells from the same
input to different outputs is not restricted. The actual ar-
rival pattern, of course, depends on the traffic shaping used
and on the specific implementation of the demultiplexers.

Note that no component in Fig. 2 need run at a rate
higher than the line rate. In other words, a demultiplexer

forwards at most a cell to a particular V OQ every cell
slot, a switch computes one schedule every cell slot, and a
multiplexer reads at most one output queue every cell slot.

Output
Multiplexers

D1

DN

M1

MN

1

N

1

N

Input
De-multiplexers

Parallel
Switches

i

j

Di

Mj

S1

Sk

Scheduler

Fig. 2. The parallel switching architecture (PSA).

To proceed further, we define the following notation:

(i, j) the flow (of cells) from input i to output j
C(i, j) a cell from input i to output j
V OQl

i,j virtual output queue j at input i in switch l
OQl

j output queue j in switch l

Our problem then is to find a scheduling algorithm that
provides cell delay guarantees while being efficient and
practical to implement. The architecture in Fig. 2 sug-
gests the following natural decompostion of the scheduling
algorithm:
• Demultiplexing: At every input i, deciding where to for-
ward each incoming cell.
• Scheduling: In each of the k parallel switches, at each
slot, deciding which cells to transmit across the switch.
• Multiplexing: At every output j, deciding which switch
Si, i = 1, . . . , k to read a cell from.

Before discussing the operation of this architecture, we
describe a major issue that could arise when using the PSA,
namely overloading the output queues.

3

Two cells of the same flow that arrive at a given input,
and are forwarded to two different crossbar switches may
experience different delays depending on the state of each
switch, and thus may arrive at the output in the wrong
order. Even though it appears that this could be circum-
vented by controlling the order in which the output queues
are read (that is, by determining, at each cell slot, the out-
put queue containing the oldest cell of a flow and reading
that cell), there could still be situations, such as the one
depicted in Fig. 3, where no output queue at all can be
read without violating the order of the cells.

Head of Line
(HOL) Cell

2’

1

1’

2

Output Queue j in
switch S1 OQj

1

Output Queue j in
switch S2 OQj

2

 To multiplexer Mj

Fig. 3. Possibility of deadlock at the output.

In Fig. 3, the cells at the head of output queue j in both
parallel switches are the second cells of their respective
flows.

Thus, with FIFO output queues, it is not possible to
transfer any cell to output j without violating the order
of cells in a flow. Another solution could be to read the
Head Of Line cells and temporarily store them for transfer
later, when the multiplexer has read deep into the output
queues to be able to reconstruct the correct order of cells in
a flow. Clearly, if this happens often enough, cell slots will
be wasted without delivering cells to output j, causing the
FIFO output queues to be overloaded and grow indefinitely.
It can be shown (see [10]) that if the parallel switches are
allowed to operate independently and the multiplexer waits
to reorder cells, the number of cells transmitted at the out-
put could fall consistently short of the number of arriving
cells, thereby overloading the output and preventing 100%
throughput.

Therefore, on one hand our goal is to enable the switches
to operate in a coordinated fashion, while on the other it
is to avoid excessive bookkeeping of the type needed in [5]
to emulate output queueing.

The key is to avoid the type of deadlock depicted in Fig.
3. To do so, we consider the following two properties:

Definition 1 (Output Contention property) In a single
switch, two cells coming from different inputs and destined
to the same output cannot be switched during the same
cell slot (this is trivial when the switch has no speedup).

Definition 2 (Per-Flow Order property) For any two
cells C1 and C2 of the same flow, if C1 arrived before
C2, then by the end of the cell slot during which C2 was
switched, C1 would also have been switched.

We will show that the above properties are sufficient to
ensure that at any output j the cells of a flow can be read in
FIFO order. We begin be defining a partial order relation
≺FIFO on cells in the output queues.

Definition 3 (FIFO) For any two cells C(i, j) and
P (k, j) at the output, C(i, j) ≺FIFO P (k, j) iff:
• The cell slot during which C(i, j) was switched precedes
the cell slot during which P (k, j) was switched, or
• The cell slot during which C(i, j) arrived precedes the
cell slot during which P (k, j) arrived, both were switched
during the same cell slot, and i = k

We call a cell P early if there is no cell C such that
C ≺FIFO P .

Lemma 1: If the output contention and per-flow or-
der properties are both satisfied, the following is true for
every output j of the PSA: At the end of a cell slot, either
OQl

j is empty for all l or there exists a flow such that its
oldest cell over all k switches is an early cell and is at the
head of OQl

j for some l.

Proof: If OQl
j is empty for all l, the lemma is true.

Assume that there is an l such that OQl
j contains an early

cell C(i, j). We will prove that C(i, j) is at the head of
OQl

j and that C(i, j) is the oldest cell of flow (i, j). We
first prove that C(i, j) is at the head of OQl

j . We know
that no cell P can be ahead of C(i, j) in OQl

j ; otherwise,
C(i, j) would not be an early cell because by the Output
Contention property, P would have been transmitted in a
cell slot prior to the cell slot in which C(i, j) was transmit-
ted. Next we prove that C(i, j) is the oldest cell of flow
(i, j). If this is not so, then by the per-flow order property,
we know that the oldest cell of flow (i, j) was transmitted
by the end of the cell slot in which C(i, j) was transmitted.
This implies that C(i, j) cannot be an early cell, which is
a contradiction.

The above lemma implies that for every output j, when-
ever there are cells in the output queues of the parallel
crossbars, a cell can be read without violating the FIFO
order of cells of a flow (i, j). This eliminates the deadlock
situation described earlier and prevents the output queues
from being overloaded.

Since the output contention property is trivially satis-
fied when the switches have no speedup, we only need to
design our scheduling scheme to satisfy the per-flow order
property. To do so, we restrict the scheduler to operate
as follows. During each cell slot, the scheduler computes
a matching M and applies it in all the k parallel cross-
bar switches. Moreover, for every flow, we follow a special
policy to forward the cells to the different switches.

IV. The Approach

To specify our approach, we will describe how the PSA
carries out the three steps outlined in Section III. We start
with a definition.

4

Definition 4 (k-parallel scheduling) In the PSA setting,
k-parallel scheduling is one where, during each cell slot, the
scheduler computes only one matching, M , and applies it
in all k parallel crossbar switches.

A. Demultiplexer Operation

To distribute the incoming cells among the k parallel
switches, the demultiplexer follows as a special demulti-
plexing strategy, which we call minimum length demulti-
plexing, as defined below:

Definition 5 (Min. length demultiplexing) For every out-
put j, demultiplexer Di forwards a cell destined for output
j to a switch l that had a minimum number of cells in
V OQl

i,j at the end of the cell slot preceding the current
cell slot.

We now prove that this strategy together with k-parallel
scheduling ensures that the k oldest cells for each flow (i, j)
are always in distinct crossbar switches.

Lemma 2: If minimum length demultiplexing and k-
parallel scheduling are used, then at the end of a cell slot,
the lengths of V OQl

i,j and V OQs
i,j differ by at most 1 for

any two switches l and s.

Proof: The proof is by induction, is given in [10].
Using Lemma 2, we can now prove the following lemma:

Lemma 3: If minimum length demultiplexing and k-
parallel scheduling are used, then for any flow, at the end
of a cell slot, either all cells at the input side are in distinct
switches or the k oldest cells at the input side are in distinct
switches.

Proof: We give a sketch of the proof, the details
appear in [10]. If at the end of a cell slot T , there is
some V OQs

i,j that is empty, then by Lemma 2, V OQl
i,j

has length at most 1 for all l and hence all cells at the in-
put side are in distinct switches. If at the end of a cell slot
T , no V OQs are empty, then for the k oldest cells at the
input side not to be in distinct switches, it must be that
some V OQ, say V OQl

i,j , contains two of the k oldest cells
C1 and C2, and another V OQ, say V OQs

i,j contains a cell
C3 that is not among the k oldest cells. The proof consists
of showing that this implies that at the end of some cell
slot T0 prior to T , the lengths of V OQl

i,j and V OQs
i,j differ

by at least two, which contradicts Lemma 2.

Theorem 1: If minimum length demultiplexing and
k-parallel scheduling are used, then the per-flow order
property is satisfied.

Proof: Assume that the property is violated at the
end of cell slot T . This means that for some flow (i, j),
a cell C2, that arrived after another cell C1, was switched
during cell slot T while C1 remained on the input side at
the end of cell slot T . C2 could not have been in the same
V OQ, say V OQl

i,j , as C1 because of the FIFO property of

the input and output queues in a single switch. Moreover,
since at most one cell C(i, j) can arrive during cell slot T ,
C1 was in V OQl

i,j at the end of cell slot T−1, otherwise C2
could not have been present in the switch during cell slot
T . This means that at the beginning of cell slot T , V OQl

i,j
was non-empty. Since we apply the same matching in all
switches, it must be that a cell C0, other then C1, was at
the head of V OQl

i,j . This implies that at the end of cell slot
T − 1, the length of V OQl

i,j was at least two. By Lemma
2, at the end of cell slot T − 1, no V OQ was empty and
hence C2 must have been in its V OQ. This means that at
the end of cell slot T −1, we had at least k+1 cells for flow
(i, j) at the input side and hence C2 must be one of the
oldest k cells in order not to violate Lemma 3. This puts
C1 and C0 among the oldest k cells which violates Lemma
3.

We can now prove that using minimum length demulti-
plexing and k-parallel scheduling cannot overload the out-
put queues.

Corollary 1: If minimum length demultiplexing and
k-parallel scheduling are used, then for every output j, at
the end of a cell slot, either OQl

j is empty for all l or there
exists a flow such that its oldest cell over all k switches is
at the head of OQl

j for some l.

Proof: Since the output contention property is triv-
ially satisfied, the corollary is immediate from Lemma 1
and Theorem 1.

We can prove (see [10] for details) that each of the
following demultiplexing strategies, when combined with
k-parallel scheduling, is a minimum length demultiplexing.

Round Robin
In this strategy, each demultiplexer keeps N counters, one
for each output. Each counter stores the identity of the
switch to which a new cell for that output should be for-
warded, and all counters start initially at 0. Every time
that the demultiplexer forwards a cell for a particular out-
put to the switch specified by the corresponding counter, it
increments that counter mod k. This has the nice property
of dividing the rate of a flow equally among the k parallel
switches. Thus, each switch sustains a rate ri,j/k if the
original rate of the flow is ri,j .

Round Robin Reset
This strategy is the Round Robin strategy, with the follow-
ing variation. For every flow (i, j), the system keeps track
of the number of cells of that flow still residing at the in-
put side of the crossbar switches. Whenever this number
becomes zero, the counter at demultiplexer Di that corre-
sponds to output j is reset to zero. This strategy requires
some extra information (to be kept either in the sched-
uler or in the demultiplexers) in order to correctly reset
the counters of the demultiplexers. As described in [10],
however, it actually requires the scheduler to keep less in-

5

formation for coordinating the operation of multiplexers at
the output ports, and in some cases, as mentioned later
in this paper, it also helps to reduce the amount of state
information that the scheduler must look at for computing
a matching.

B. Scheduler Operation

In Theorem 1, we have already shown that minimum
length demultiplexing together with k-parallel scheduling
satisfies the per-flow order property, which (with the output
contention property) ensures that, for every output j, it is
possible to read a cell (if one is available) without violating
the order of cells within a flow. In section IV.C, we explain
how, during each cell slot, the multiplexer may identify
the appropriate queue to read from. Our focus here is to
consider how a matching M may be computed to achieve
bounded cell delay. We turn our attention first to a class
of scheduling algorithms for a single switch that we call
k-serial scheduling.

Definition 6 (k-serial scheduling) In a single switch set-
ting, k-serial scheduling is one in which the scheduler ap-
plies a matching consecutively k times before computing
and applying a new matching.

We can show that any k-serial scheduling algorithm with
a particular speedup can be emulated by a combination of
minimum length demultiplexing and a k′−parallel schedul-
ing, where we define emulation as follows:

Definition 7 (Emulation) If, using some k-serial schedul-
ing algorithm, a cell C is transmitted across the single
switch during a cell slot T , then using minimum length
demultiplexing and a k′-parallel scheduling algorithm in
the PSA, the same cell would also have been transmitted
across one of the parallel switches by the end of cell slot T .

Theorem 2: If cell arrivals occur only at the beginning
of a cell slot, then any k-serial scheduling algorithm under
a fractional speedup S = k/c can be emulated using mini-
mum length demultiplexing and an dSe-parallel schedul-
ing algorithm.

Proof: The detailed proof appears in [10].

Theorem 3: If a k-serial scheduling algorithm under a
fractional speedup S = k/c guarantees a cell arbitration
delay DA, then emulating that scheduling algorithm us-
ing minimum length demultiplexing and an dSe-parallel
scheduling algorithm guarantees a total cell delay of (dSe+
1)DA+B, where B is a constant, if every output reads cells
in the FIFO order.

Proof: By Theorem 2, we know that the dSe -parallel
scheduling algorithm will guarantee a cell arbitration delay
DA. Therefore, at any time, the number of cells destined
to an output j that are still at the input side in all switches
cannot be more than dSeDA; otherwise, the inputs of some
switch l will have more than DA cells destined to output

j, and hence at least one cell will be delayed for more than
DA cell slots. By Corollary 1, if there are cells waiting in
some output queue OQl

j , then it is possible to read a cell at
output j without violating the FIFO order. Consider a cell
slot in which some OQl

j becomes non-empty for the first
time. At the beginning of this cell slot, we know that the
number of cells destined to output j that were still at the
input side in all the switches was at most dSeDA. If in every
cell slot during the next c cell slots, some OQs

j is non-empty,
then we know that by the end of the c cell slots we will have
read c cells at output j. However, during the c cell slots,
the total number of cells that could have been transmitted
to some output queue of port j is dSeDA + c + B, because
at most c + B cells destined to output port j could have
arrived during c cell slots, where B is a burst constant.
This means that the total number of cells that remain in
the output queues of port j after c cell slots is at most
dSeDA + B. This is true for any c; therefore, at any time,
the number of cells in all output queues of port j cannot
be more than dSeDA + B. As a result, since the output
emulates a FIFO queue, once a cell arrives at the output
side, it will be delivered within at most dSeDA+B cell slots,
hence guaranteeing a total cell delay of (dSe + 1)DA + B.

If round robin demultiplexing is used, then to guarantee
a total cell delay, we need not restrict the output to read
cells in the FIFO order. We only require that the output
read cells of the same flow in order, which is a requirement
we have imposed throughout in this paper.

Theorem 4: If a k-serial scheduling algorithm under a
fractional speedup S = k/c guarantees a cell arbitration
delay DA, then emulating that scheduling algorithm using
Round Robin demultiplexing and an dSe-parallel scheduling
algorithm guarantees a total cell delay of (dSe + 1)DA +
B + (dSe − 1)N − 1, where B is a constant and N is the
size of a switch, provided every output reads cells of the
same flow in order.

Proof: The proof is similar to the proof of Theorem
3, and appears in [10].

It remains for us to show the existence of k-serial schedul-
ing algorithms that guarantee a cell arbitration delay under
a speedup S = k/c. It turns out that we can do so by mod-
ifying some existing scheduling algorithms that guarantee
cell arbitration delay under some speedup S and make them
k-serial scheduling algorithms.

B.1 Some k-serial Scheduling Algorithms

To convert an existing scheduling algorithm for a sin-
gle switch into a k-serial scheduling algorithm, we simply
modify the existing algorithm to hold a matching that it
computes constant for k cell slots. Our motivation is that
the state of a switch cannot change substantially within a
constant time. Thus, holding the same matching for k slots
should still be able to guarantee a cell arbitration delay.

6

We were able to prove this fact for several existing
scheduling algorithms, such as the oldest cell first OCF
due to Charny et al [7], the central queue algorithm due to
Kam et al [9], and a special maximal matching algorithm.
In each of these algorithms, holding the matching for a con-
stant time adds an additional delay of O(kN

1−α), where k is
the number of times we hold the matching, N is the size
of the switch, and α is the traffic rate per input. We refer
the interested reader to [10] for details.

B.2 Birkhoff-von Neumann Decomposition: A k-parallel
Algorithm

Chang et al [6] have proposed an algorithm that is capa-
ble of providing service guarantees for input-buffered cross-
bar switches with no speedup. The algorithm consists of
taking a static rate matrix and computing a schedule in
time O(N4.5), based on a decomposition result of Birkhoff
and von Neumann. The schedule is a static list of match-
ings, corresponding to permutation matrices obtained from
a decomposition of the rate matrix, that are applied accord-
ing to certain weights.

In our context, we may utilize this algorithm in con-
junction with round robin demultiplexing, which ensures
that the rate matrix of any crossbar switch is equal to the
original rate matrix scaled by k. Since all parallel cross-
bars have the same rate matrix, the same schedule can be
applied to them. Thus, as a natural consequence of this
approach, we can apply the same matching in all of the
parallel crossbars of the PSA. The result is that our sys-
tem now provides the exact same guarantees as the original
algorithms of Chang, with the added advantage, that we
can sustain a line rate that is k times the rate at which the
parallel crossbars operate.

B.3 Reducing State Information

It can be shown (see [10]) that when the speedup S is an
integer, the k-parallel scheduler can reconstruct, from the
state of the parallel crossbars of the PSA, the state of the
single switch running the k-serial scheduler. This requires,
however, that the PSA scheduler examine the state of each
of the k parallel crossbars, and maintain global state. It
turns out that this global state requirement can actually
be eliminated.

For the single-switch scheduling algorithms discussed
above, only two kinds of state are needed: the oldest cell
of every flow, and the length of each V OQ. Details on
reducing the state information for the different algorithms
mentioned above appear in [10]. We will describe here how
to reduce the state information for OCF, which requires
the oldest cell of each flow. By using round robin reset
demultiplexing, we ensure that the oldest cell of every flow
is always in the first switch. Thus, when using OCF and
round robin reset the scheduler need only look at the state
of the first switch to compute a matching.

Observe that state reduction is not an issue for the
Birkhoff von Neumann decomposition algorithm, because
it only stores a pre-computed schedule and so does not
require any state information from the crossbar switches

for its operation. Therefore, it does not require the use of
round robin reset.

C. Multiplexer Operation

We have already shown that by using minimum length
demultiplexing and k-parallel scheduling, it is possible for
the multiplexer at an output port of the PSA to always read
a cell from the output queues of the parallel crossbars such
that the order of cells of a flow is not violated. The only
question that remains is how a multiplexer Mj determines
which output queue OQl

j to read the next cell from? This
may be done as follows.

For each output j of the PSA, the scheduler maintains
a FIFO list Lj of tuples (c, s) for each cell slot T , where
during cell slot T , c is the number of cells switched from
input i to output j, and s is the index of the parallel cross-
bar whose jth output queue contains the oldest cell among
the switched cells of flow (i, j). During each cell slot for
which flow (i, j) belongs to a matching M , the scheduler
adds (c, s) to Lj . The scheduler may easily obtain the in-
formation to do so from the demultiplexers.

As shown in [10], the total communication required be-
tween the demultiplexers and the scheduler is Ndlog Ne+
2Ndlog ke bits. At the output side, each multiplexer Mj
periodically retrieves from the scheduler a tuple (c, s) from
which it learns the number of cells that must be read and
the identity s of the crossbar switch from whose output
queue the multiplexer must start reading the first cell of
this round. The communication between the scheduler and
output multiplexers requires 2Ndlog ke bits. Hence, the
total communication with the scheduler is O(N log kN),
which is within a constant factor of the Ω(N log N) bits
needed to specify a matching in a single switch.

V. Conclusion

We suggested a scheme that eliminates the need for
speedup by using dSe parallel crossbar switches, where S
is the speedup of the original switch. The key to our ap-
proach was to use a common scheduler and apply the same
matching in all the parallel switches. We proved that this
is equivalent to simply holding the same matching constant
for some number of slots in the single switch setting, which
still guarantees bounded cell delay for a number of known
algorithms. In addition, both demultiplexing and multi-
plexing at the inputs and outputs of the PSA, respectively,
could be done using O(N log kN) bits of communication
between the scheduler and the parallel crossbars compared
the Ω(N log N) bits of communication needed in a single
switch.

The choice of FIFO queues in this work was based on
their ease of implementation at high speeds. A direction
for future work could be to relax the assumption that the
output queues in a parallel crossbar are FIFO queues, thus
allowing for out-of-order delivery of cells. The goal then
would be to bound the extent to which a cell could be
”out-of-order.” In other words, to bound the number of
undelivered cells that arrived before a delivered cell. An-
other direction of work would be to consider switches with

7

shared memory modules (which would be similar architec-
turally to the model in [5], since an output-queued switch
can be viewed as a shared memory module), and try to de-
vise practical and scalable scheduling algorithms that pro-
vide throughput and/or delay guarantees.

References
[1] A. Mekkittikul and N. McKeown, A starvation-free algorithm for

achieving 100% trhoughput in an input queued switch, Proc. Int’l
Conf. Computer Commun. Networking, ICCCN’96, pp. 226-231,
October 1996.

[2] A. Mekkittikul and N. McKeown, A practical scheduling algo-
rithm to achieve 100% throughput in input-queued switches, Proc.
IEEE INFOCOM’98, vol. 2, pp. 792-99, March-April 1998.

[3] N. McKeown, V. Anantharam, J. Warland, Achieving 100%
throughput in an input-queued switch, Proc. IEEE INFOCOM’96,
vol. 1, pp. 296-302, March 1996.

[4] S.-T. Chuang, A. Goel, and N. McKeown, Matching output queu-
ing with combined input output queued switches, IEEE J. Select.
Areas in Commun., vol. 17, no. 6, pp. 1030-39, June 1999.

[5] S. Iyer, A. Awadallah, and N. McKeown, Analysis of a packet
switch with memories running slower then the line rate, Proc.
IEEE INFOCOM’2000, vol. 2, pp. 529-37, March 2000.

[6] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, On service guaran-
tees for input-buffered crossbar switches: A capacity decomposi-
tion approach by Birkhoff and von Neumann, Proc. Seventh Int’l
Workshop on Quality of Service, IWQoS’99, pp. 79-86, May-June
1999.

[7] A. Charny, P. Krishna, N. Patel, et al, Algorithms for provid-
ing bandwidth and delay guarantees in input-buffered crossbars
with speedup, Proc. Sixth Int’l Workshop on Quality of Service,
IWQoS’98, pp. 235-44, May 1998.

[8] P. Krishna, N. S. Patel, and A. Charny, On the speedup re-
quirement for work-conserving crossbar switches, IEEE J. Select.
Areas in Commun., vol. 17, no. 6, pp. 1057-69, June 1999.

[9] A. Kam, K.-Y. Siu, and R. Barry, A cell switching WDM broad-
cast LAN with bandwitch guarantee and fair access, IEEE/OSA
J. Lightwave Technol. vol. 16, no. 2, pp. 2265-80, Dec. 1998.

[10] S. Mneimneh and V. Sharma, Scheduling using parallel crossbar
switches with no speedup, Tellabs Research Center Report, TRC-
00-06, Tellabs Operations, Inc., September 2000.

